

Setting the Global Standard for Clinical Data

Feedback from an SDTM Submission: A sponsor perspective

CLINICAL DATA INTERCHANGE STANDARDS CONSORTIUM

William J. Qubeck February 1, 2005

Agenda

- Submission goals, characteristics, and metrics information
- Submission Challenges
- Lessons Learned
- Conclusions/Summary

SDTM Submission Goals

- To submit CDISC SDTM compliant data for a product (Aug 2004 & Jan 2005).
- 1st Submission Goals:
 - Provide the key safety and efficacy in SDTM
 - Develop the software to support simple mappings (e.g., many sources to one target)
 - To deliver the define.xml
 - To include the data within the original NDA with NO impact on the filing date.
- 2nd Submission Goals:
 - Expand beyond the key safety & efficacy data; with the inclusion of derived results.
 - Develop product level/generic software to support complex mappings (many sources to many targets).

Submission Complexity

- Submitted 5 studies:
 - 1st: 18 domains covered about 25 submission datasets (40% of the total study data).
 - 2nd: 22 domains covered about 49 submission datasets (80% of the total study data).
- Contained over 11,000 subjects worth of data.
- All 5 studies included were in parallel design:
 - 2 Blinded trials, 2 Pivotal trials, 1 Summary of Safety.

Submission Metrics

- Resources:
 - eSub programmers: 1st 5 & 2nd 3 (fulltime).
 - 1 Project programmer: 2-4 days per study.
 - 1 Reviewer: part time, both submissions.
- Time:
 - Upper management endorsement and funding.
 - 1st 1 month discussing strategy, philosophy...
 - 4 months of programming, documentation, QC, & publishing.
 - 2nd 1 month reviewing 1st submission (+/-), redesign
 - 4 months of programming, documentation, QC, & publishing.

Submission Metrics (2)

- Submission Redundancies:
 - Also submitted the data per the eNDA; 2 to 4 weeks per study to deliver.
- What are the 2nd time costs?
 - Doubled the amount of data converted to SDTM with 60% of the original staff.
 - While implementing new software and quality control procedures.

Submission Challenges

- Traditional challenges with resources.
- File size issues (3gb file!).
- Documentation issues.
- Incorporation of the SDTM metadata.
- Development of define.xml.
- Engaging the project programmers/statisticians.
- Multiple file dependency issue.
 - Complex mappings increases the file dependency issue.

Data Dependencies

Lessons Learned

Lessons Learned: Special Domains

- Trial Design Datasets
 - All datasets but Trial Visits and Subject Visit were completely manually created (3 of 5)
 - Must use protocol to generate, but the information &/or location may not be consistent from protocol to protocol
 - Was quick to implement but who should "own", review, and sign off?

Lessons Learned: Events & Interventions

- There was a 1:1 mapping for most of the Events and Intervention data (PFE to CDISC SDTM).
- All remaining E/I variables were placed in SUPPQUAL
 - SUPPQUAL became too large (exceeded our Version Control system), therefore produced 1 SUPPQUAL per dataset; updated in next version of SDTM.
 - For example, ae.xpt had ae_supp.xpt (consulted CDISC SDS leadership).
 - This made the implementation much easier because there is no longer a dependency on all datasets for SUPPQUAL.

Events & Interventions (2)

- eSub data documentation was not significantly affected (e.g., define.pdf); except for variables placed in SUPPQUAL.
- Needed CDISC SDTM metadata.
 - Used spreadsheet provided by CDISC, converted it to SAS, custom Macros that accessed the metadata.
 - Used for: labeling, validation, ordering, and additional column (define.pdf) information (e.g., Variable Roles).
- Other Technical challenges:
 - Were not able to combine Concomitant Medications (CM) with Concomitant Non-Drug Treatments because they use difference dictionaries; CDISC needs to address "how to".

Lessons Learned: Findings

- It describes the vast majority of the data in a submission.
- eSub data documentation is affected.
- Unlike the Events & Interventions, the structure of the Findings Model is very, very flexible.
- More complicated than E/I:
 - May need to transpose data into SDTM structures.
 - Findings are stored in 'normalized' data structures.
 - Should provide value-level metadata (test code info).
 - It was easier provide value-level for the 'flipped' datasets than those previously stored in a vertical structure.

An Example: Vitals Signs (VS)

Example Dataset

USUBJID	VISIT	DIABP	SYSBP	SYSBP BMI	
0001	1	70	110	25.3	55

CDISC SDS Version 3 stores data in vertical structures

USUBJID	VISIT	VSTESTCD	VSORRES
0001	1	DIABP	70
0001	1	SYSBP	110
0001	1	BMI	25.3

Value-level Metadata

Variable Label		Type	Code	Origin	Role	Comment
v al lable	Lauci	Type	Couc	Origin	Noic	Comment
USUBJID	Unique Subject Identifier	text		Sponsor Defined		Unique subject identifier within the submission.
VSTESTCD	Vital Signs Test Short Name	text		Sponsor Defined		Topic variable for VS.

Hypertext Linked

Appendix I: Record Value List

ľ	Variable	Record Value Name	Label	Data Type	Origin	Dictionary	Format	Role
	VSTESTCD	SYSBP	Systolic Blood Pressure	integer	CRF Page 5			CRT
	VSTESTCD	DIABP	Diastolic Blood Pressure	integer	CRF Page 5			CRT

Findings (2)

- These datasets can become extremely large.
 Several source datasets may map to 1 domain target.
 - E.g., All Questionnaire data goes into the QS domain, we placed 11 different questionnaires in QS.
 - QSCAT was used to separate them.

Lessons Learned: define.xml

- Specifications will be finalized this week (Feb. 4, 2005).
- A great medium for the storage and communication of the metadata.
- It is human-readable (with a style sheet) <u>AND</u> machine-readable (unlike the define.pdf).
- Process changes and software development may be needed.
- Define.xml should accompany SDTM submissions, why?
 - If define.xml is not provided then generic CDISC metadata will be used in FDA applications and NOT the definitions provided within the define doc.
 - Therefore, YOUR variable and value definitions will only be available as a stand alone document.

Lessons Learned: Data Browsing

- Used WebSDM & PPV to view the SDTM data.
- Fast, easy application to generate subject listings and profiles.
- Convenient browsing and data inspection functionality.
- Submitted report templates in the resubmission (facilitate browsing).
- Submission browsers for both the FDA and sponsors?

General Implementation Related Topics

Implementation

- Had little to no difficulty flipping the datasets back & forth (e.g., de-normalized structures); variable roles (in part) determine how this can be automated.
- The devil is in the details.
 - Controlled terminology is even more important than ever before.
 - Multiple interpretations of the SDTM documentation.
 - The implementation guide will evolve over time to provide more guidance.
 - This should reduce the variability of interpretation.
 - How do you write a generic, global document that will be used by all companies, all phases of development, for all therapies and be self evident?

Systems Development

- Can automate the creation and validation of existing and new SDTM domains.
- The variable roles can drive the reporting or browsing of the data (can distinguish between a result and an unit).
- Some parts of the STDM metadata are domain specific:
 - "Adjust the labels of the variables only as appropriate to properly convey"; how do you do this?
- Until you develop the process and software...
 - Additional time/resources will be needed of your programmers and statisticians.
- Until SDTM submissions are 'routine'...
 - Reviewers will be learning the standard, the tools, and the data.

Systems Development (2)

- There are different benefits/costs associated with different implementation sources
 - Our short-term approach is at submission time; poststudy report completion (end-game); we will convert the data to SDTM.
 - Benefit: we can do it fast and now; it does not affect any other internal process (e.g., table generation).
 - Cost: timeline considerations, conversion costs, additional QC, Rapid Responses need to be reconverted....

Systems Development (3)

Benefits of the Submissions

- We've encountered most of the obstacles.
 - Identified the internal process & software changes.
 - Baseline level of expertise and experience.
- Software reusability.
 - Will be applying both the software and learnings to other submissions.
 - The experience will be driving our global implementation.
- FDA reviewers started to look at and use the data within 2 weeks of receipt of the application.
- Providing tabulation & derived results within SDTM enabled reviewers:
 - The potential to use their tools for both types of data.
 - Reviewers can use the same data as the sponsors to make decisions (not just tabulation data).

Benefits of SDTM

- Return on Investment (ROI), depends entirely on how you use the SDTM.
- If you only use the SDTM for submissions then ROI will be limited to FDA efficiency gains (which will be balanced against development costs).
- If, however, you use the SDTM as a data exchange format (partners, vendors, etc.) then your ROI could potential be significantly greater.
 - By achieving an industry exchange standard we can reduce or eliminate non-value added activities, processes, and custom applications; thus reducing our total development costs.

Summary

- Pfizer will continue to move forward with submitting CDISC SDTM compliant data.
- Pfizer is involved in the development of industry standards (e.g., eCTD, CDISC, HL7)
 - Industry standards may necessitate process changes and result in software development costs.
 - Our goal is to achieve a positive cost/benefit ratio of implementing standards without increasing the regulatory burden.

